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Controlling Hamiltonian chaos by adaptive integrable mode coupling
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The adaptive integrable mode coupling method is proposed to control two-dimensional Hamiltonian chaos.
We demonstrate that this control method can stabilize chaotic motions into regular ones in a model of the
standard map. Global stochasticity can be removed from the phase space by the control being switched on and
off.
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Chaotic phenomena arise ubiquitously in natural syste
and in manmade devices. The pioneering work of Ott, G
bogi, and Yorke~OGY! @1# sparked a great deal of interest
control of chaotic dynamic systems@2–4#. Almost all of the
systems studied share one common feature—being dis
tive. Dissipative systems exhibit ergodic behavior on
strange attractors, while chaotic Hamiltonian systems h
complicated phase space structure, they have no attra
but interwoven chaotic and regular regions, which have co
plicated influence on the chaotic dynamics and presen
challenge to chaos controlling. There have been some f
runners in this direction@5–9#. Noting that an unstable peri
odic orbit in Hamiltonian systems often exhibits comple
conjugate eigenvalues at one or more of its orbit points,
et al. @5# extended the OGY stabilization method to cont
Hamiltonian chaos by incorporating the notion of stable a
unstable directions at each periodic point. Similar to OGY
method, applying this scheme one has to follow the traj
tory, and has to calculate the corresponding perturbation
rameters on each step by a complicated algorithm. Ther
another type scheme, whose goal is directing a trajectory
desired target in the phase space@6–9#. Obviously, it is not a
general way to control Hamiltonian chaos. Therefore, so
new methods for controlling Hamiltonian chaotic syste
ought to be found, which should be both efficient and g
eral.

In this paper, we will propose one method for controllin
chaos in two-dimensional Hamiltonian systems, which
called the adaptive integrable mode coupling method. O
goal is to remove the chaotic motions that permeate into
global phase space, and to stabilize them all into reg
motions with small perturbation while the final states of t
controlled system remain the main features of the origi
Hamiltonian system. In the following, we will demonstra
this method in a model of the standard map.

The standard map is one of the most frequently occurr
models in many different applications@10,11# written in the
form

Jn115Jn2
K

2p
sin~2pun!, mod 1, ~1!
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un115un1Jn11, mod 1

where it exhibits, in spite of its simplicity, much of the com
plex and canonical behavior of more complicated mode
and this is ideally suited for the study of chaotic dynamics
Hamiltonian systems. ForK less than the threshold valu
@12# Kc>0.9716 . . . motion inJ is bounded by the existenc
of good Kolmogorov, Arnold, and Moser~KAM ! @13# sur-
faces. ForK.Kc , there is unbounded motion inJ, and glo-
bal chaos sets in.

We are interested in the chaotic orbits, that can re
arbitrary values ofJ when K.Kc . To our knowledge, the
greater the nonintegrability of the Hamiltonian system~i.e.,
the largerK is!, the fewer BirkhoffM cycles, the smallerM
and N are ~rotation numbers of these orbits areN/M , in
which M andN are coprime integers! @11#. For the standard
map, each of these ellipticM cycles has one fixed point o
u50, and this is a common feature of all values ofK includ-
ing the integrable caseK50. In the case ofK50, the solu-
tions corresponding to these ellipticM cycles are integrable
modes, which we apply in controlling. Coupling with the
integrable modes, the system under control can be descr
by the following equations:

Jn115Jn2
K

2p
sin~2pun!1e~yn2un!, mod 1

un115un1Jn11 , mod 1, ~2!

Xn115Xn@12Q~un!#1JnQ~un!, mod 1

yn115yn@12Q~un!#1unQ~un!1Xn11 , mod 1

where

Q~un!5H 1 un<e, un>12e

0 e,un,12e.
~3!

e is a control parameter, ande is set on 0.001. Equation~2!
can be considered as a system with two coupling subsyste
$J,u% and $X,y%. It is obvious that the subsystem$X,y% is
integrable in both cases ofQ(un), and it drives the other
subsystem$J,u% by a linear coupling ofg5e(yn2un).
Wheneverun comes into the vicinity of@2e,1e#, the inte-
grable subsystem$X,y% is reset to$X5J,y5u1J%, and we
call this process anadaptiveexertion.

The Jacobian determinant of Eq.~2! equals
ail
2135 ©2000 The American Physical Society
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U1 2K cos~2pun!2e 0 e

1 2K cos~2pun!2e11 0 e

Q~un! ~Jn2Xn!Q8~un! 12Q~un! 0

Q~un! ~Jn2Xn2yn1un!Q8~un!1Q~un! 12Q~un! 12Q~un!

U , ~4!
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whereQ8(un)5d(un211e)2d(un2e). We note that de-
terminant~4! does not always equal61. WhenQ(un)50,
Det. ~4! equals 1 and the system of Eq.~2! conserves its
measure. WhenQ(un)51, Det. ~4! equals 0, andX is a
trivial dimension. If we consider$J,u,y% only, we obtain

U1 2K cos~2pun!2e e

1 2K cos~2pun!2e11 e

1 1 0
U52e, ~5!

which indicates dissipation. It is notable that for global s
chasticity, the probability for the case ofQ(un)50 is much
bigger than that ofQ(un)51 due toe50.001 and Eq.~3!.
So, there is a long term of the conservative driving, drivi
$J,u% into $X,y%, and a short term of the dissipative rese
ting, resetting$X,y% to $J,u%. The two terms turn out alter
nately. Via this interactive course, one can expect the sys
to turn into the common stable structure of the two su
systems, and that global chaos can be suppressed in this

The first question is: Can global chaos under this hand
be stabilized into regular motions? The answer is posit
and the control parameter can be so small that the con
signal has a mass of order 1% of that of the controlled s
tem. For eachK considered, we have determined 43104 to
be of random initial values, all of which can be complete
controlled. Figure 1 shows an example in whichK51.9, e
50.006, and the global chaotic motion is controlled by reg
lar motion. After cutting off enough relaxation iterations, a
the stable islands maintain their stable regions while bec
ing smaller, and all the global chaotic orbits have been

FIG. 1. Stabilized global chaos:~a! Jn vs n; ~b! un vs n; K
51.9, e50.006, and 105 iterations have been cut.
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bilized into regular motions. Then, when we release the c
trol ~i.e., resete50), the system follows Eq.~1!, and iterates
in the corresponding stable~again! islands permanently. Fig
ure 2 exhibits the typical orbits in the phase space on dif
ent control stages. The global chaotic motions shown in F
2~a! have been controlled by regular ones in the limited
gions in Fig. 2~b!, and they become regular orbits in th
stable islands shown in Fig. 2~c! after releasing the contro
action. Thus, global chaos in Eq.~1! has been controlled, an
global stochasticity has been removed. We have mentio
above that the system under control becomes dissipativ
has local convergent regions. Taking into account our sim
lation results, these limited regions are just inside the form
stable islands region, and all the systems running under c
trol will be trapped in these regions, then turn into regu
motions. The control does not change the periodic orbits o
and 2. By inserting their corresponding solutions into t
matrix corresponding to Eq.~4! and determining their linea
stability, we know that the norms of all the eigenvalues
them are no larger than 1, so these special periodic or
remain stable under control.

Since we only have some limited regions of regular m
tions in Fig. 2~b! which belong to the former stable island
the second question is can the stabilized regular orbits un

FIG. 2. Typical orbits in the phase space (un ,Jn). ~a! is from
Eq. ~1!; ~b! is from Eq.~2!; ~c! is from Eq.~2! after the control is
switched off, and all the global chaotic motions have been remo
from ~a!. K51.1, e50.006, and 107 iterations have been cut.
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control belong to those of the former stable islands? T
answer is negative, and remains negative except for the
cial periodic orbits mentioned above. This is easy to estim
and to show. After global chaos has been stabilized, we
lease the control, check the resultant motion, then we h
the behaviors in Fig. 3, showing that changes inun are all
small, while inJn there are three kinds of typical change
They are either shrinking as in~a!, swelling as in~b!, or
changing very little as in~c!. Although their regular modes
are changed, the resultant motions are still inside the a
stable islands, and global chaos has been completely s
lized.

It is worthwhile to note that for different initial values, th
relaxation iterations which should be cut are different; a f
of them spend 106. For example, we control 1003100 initial
values withK51.9 ande50.006, and the initial values ar
distributed uniformly in the phase space of the system w
out control. We calculate the distribution of the relaxati
times in Fig. 4 to quantify the iterations to achieve the fin
localized regular state. From Fig. 4, we note that the ti
scale has a peak at about 30 000 iterations in addition
long time tail. 94.86% of the initial conditions can be co
trolled in 105 iterations, while the other 5.14% need 106.
This implicitly reflects the third question we are interest
in: What are the complex basins of attraction? There are o
two families of regular motions under the condition as sta
above, most of which correspond to the primary period
family, while under the other condition a few correspond
the primary period 2 family, to which the initial values co
tributed are illustrated in Fig. 5. There is 1003100 points
with homogeneous distribution considered in each frame
Fig. 5, where~b! magnifies~a!, and~c! magnifies~b!. Scat-
tering distribution can be observed in finer and finer scale
Fig. 5. It can be expected that: if one point in the phase sp
of (u,J) is controlled in the period 2 family, in its arbitrar
small vicinity, there must be another point which will b
controlled in the period 1 family. This is obvious in Fig.
Figure 6 shows two trajectories of the controlled syst

FIG. 3. Typical changes of the system. The control is relea
from n51000. ~a!–~c! are Jn vs n, and ~d!–~f! are un vs n corre-
sponding to~a!–~c!. K51.2, e50.006, and the only difference
among~a!, ~b!, and~c! @~d!, ~e!, and~f!# is the different initial value.
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which are stabilized into the period 2 family in~a! and the
period 1 family in~b!, respectively. The trajectories in bot
~a! and ~b! almost visit the whole phase space of (u,J).
Comparing Figs. 6~a! with 6~b!, we can state that the basin
of attraction for the two are intermingled with each other

d

FIG. 4. Distribution of the relaxation times for achieving
stable state.K51.9, e50.006, and 1003100 different initial con-
ditions are considered.

FIG. 5. Initial values are controlled into a period 2 family:~a!
full set; ~b! enlargement of region defined in$(u0 ,J0)u0.4<u0

,0.41,0<J0,0.01%; ~c! enlargement of region defined i
$(u0 ,J0)u0.4<u0,0.4001,0<J0,0.0001%. K51.9, e50.006, and
1003100 points with homogeneous distribution are considered
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Now, the fourth question is: What is the effective range
our control method? It is reasonable to conjecture: if th
are stable primary islands in the phase space, all global c
can be driven into regular motions. The last Birkhoff cycle
a 1 cycle, so the control method might guarantee the up
bounds asK54. Much numerical simulation justifies thi
conjecture. In fact, evenK is larger than 4, for example, o
K54.3, we can still stabilize some of the global chaotic m
tions into regular ones, but we cannot stabilize all of the

In summary, we proposed an alternative method to c
trol the two-dimensional Hamiltonian chaos in a model
the standard map. And we demonstrated that this method
stabilize the chaotic orbits that permeate throughout the
bal phase space. All the orbits are controlled into some
calized regions similar to the former stable islands
smaller. When the control is switched off, the regularity w
be kept. We cannot determine in advance what kinds of re
lar motions the system under control will finally be stabiliz

FIG. 6. Typical trajectories of the controlled system with rela
ation. The orbit in~a! is controlled into period 2 family, and the
orbit in ~b! is controlled into period 1 family, andK51.2, e
50.006.
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into because the attractive basins for them are complica
being intermingled. The method can be implemented sa
in the range ofK,4, even in the case whereK is a little
larger than 4, but it still has some effect on global chao
motions.

The principle behind this method is using the adapt
integrable mode of the system as a dissipative pulse to c
trol Hamiltonian systems. The system under control is c
servative in a long term, and dissipative in a short term d
to the short dissipative pulse exaction. The width of the d
sipative pulse is very short@t(«)}1023# and the strength of
the pulse is very weak (e}1022) so that the final trajectories
of the system remain the main features of the original Ham
tonian system. This method can control all the differe
kinds of initial values considered, so its efficiency is gene
For an experimental system, the integrable mode may
produced either by an integrable real system correspon
to the controlled system or by a signal generator. Since
can have computer in signal’s analyzing and controlling, i
not difficult to introduce a weak dissipative pulse to the e
perimental system, and it is easy to apply this method.

The method studied in this paper is based on the sym
try and continuity between a nonintegrable system and
integrable counterpart. This indicates a possibility of app
ing it to other two-dimensional Hamiltonian systems, and o
further work in this context is in process. One of the mo
important lessons learned from the kicked rotator mod
from which one kind of real physical system of the standa
map arises is the classical diffusion excitation taking pla
above the chaotic threshold, which is quantum mechanic
suppressed by interference effects that lead to expone
localization of excitation in momentum space@14#. Further-
more, the formal connection between the rotator problem
the one-dimensional tight-binding model with a tim
independent pseudorandom potential was found@15#, which
led to the recognition that the quantum suppression of
chaotic excitation of the rotator is a sort of dynamical ve
sion of Anderson localization. Since then, we can expect
method to apply to controlled dynamical localization ph
nomenon in a quantum Hamiltonian system.
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